The preparation and behaviour of $Ti/Au/PbO_2$ anodes

Ch. COMNINELLIS, E. PLATTNER

Institute de génie chimique, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland

Received 7 September 1981

 $Ti/Au/PbO_2$ electrodes have been prepared and their stability in H_2SO_4 (2–12 mol dm⁻³) has been studied. It has been found that incorporation of a gold layer between the Ti substrate and the PbO₂ decreases the resistance of the electrode. The corrosion of an electrode polarized anodically increases with H_2SO_4 concentration especially above 8 mol dm⁻³ H_2SO_4 .

1. Introduction

During recent years, there have been several studies on the preparation of Ti/PbO_2 anodes [1-3]. Such anodes are now available for commercial use [4].

 Ti/PbO_2 anodes have two advantages over the graphite/PbO₂ ones usually used:

(a) The electrochemical stability of the titanium substrate permits its re-use at the end of the anode's life.

(b) A more compact cell can be constructed with Ti/PbO_2 anodes.

The main problem with this type of anode is the growth of TiO_2 between the titanium substrate and the deposited PbO_2 , as TiO_2 has a high electric resistivity and a high potential barrier. The voltage loss in the bulk of the electrode is, therefore, high and its practical application is not good.

Wabner *et al.* [1] maintain that in 1 mol dm⁻³ H_2SO_4 such anodes fail within 100 h or so, unless a special pre-treatment is applied to the titanium surface prior to coating. The pre-treatment is claimed to suppress the growth of TiO₂ between the titanium substrate and the deposited PbO₂.

In the present paper the titanium-supported PbO_2 electrode was modified by introducing an electroplated gold layer between the titanium and the PbO_2 . Its stability and anodic polarization characteristics were examined in aqueous H_2SO_4 solutions [5]. Finally the electrode was used in the electrochemical oxidation of $MnSO_4$.

2. Experimental details

2.1. Preparation of the electrodes

The titanium was etched initially for 30 min in boiling 20% HCl then gold film was electroplated onto it from a citrate acid bath (Tecnor CF, Galvanotec, Suisse), followed by the deposition of PbO₂ from a plating bath of 350 g dm⁻³ Pb(NO₃)₂ and 30 g dm⁻³ Cu(NO₃)₂ at 65° C with a current density of 2.5 A dm⁻². The pH of the bath was maintained constant (at pH 3) by periodic addition of CuCO₃. Most studies have used electrodes containing 3.8 g Au m⁻² and 529 g PbO₂ m⁻².

2.2. Measure of stability

The electrochemical stability of the $Ti/Au/PbO_2$ electrode has been studied by measuring the weight loss of the test electrode (plates of 20 cm²) polarized anodically under different conditions. A platinum plate was used as the counter electrode and the cell (50 cm³) was stirred with a magnetic bar.

2.3. Polarization measurements

Steady-state current-potential curves were obtained at 20° C using a platinum sheet counter electrode and a mercury-mercurous sulphate (Hg/Hg₂SO₄) reference electrode.

Fig. 1. Weight loss of the Ti/Au/PbO₂ electrode polarized anodically at 200 mA cm⁻² as a function of time. $T = 30^{\circ}$ C. A = 2 mol dm⁻³ H₂SO₄; B = 5 mol dm⁻³ H₂SO₄; C = 7.5 mol dm⁻³ H₂SO₄; D = 8.5 mol dm⁻³ H₂SO₄; E = 9.0 mol dm⁻³ H₂SO₄; F = 12.0 mol dm⁻³ H₂SO₄.

2.4. Preparative electrolysis

The electrolytic cell consisted of a thermostatted cylindrical reactor (750 cm^3) without a diaphragm and stirred with a magnetic bar.

A titanium plate ($10 \text{ cm} \times 6.2 \text{ cm} \times 0.25 \text{ cm}$) was coated with gold and PbO₂ as described previously and was used as the anode (130 cm^2). Four wires (stainless steel) placed around the anode were used as cathodes (18 cm^2).

The amount of manganic sulphate (or/and MnO_2) formed in the cell was determined by iodometric titration.

3. Results

3.1. Stability of the electrode

Many factors influence the electrochemical stability of the electrode in H_2SO_4 as is shown below.

3.1.1. H_2SO_4 concentration. The weight loss of the Ti/Au/PbO₂ electrode polarized anodically at 200 mA cm⁻² is shown in Fig. 1 as a function of time at different H_2SO_4 concentrations. The average corrosion rate is shown as a function of the H_2SO_4 concentration in Fig. 2.

From these figures we can see that: (a) the corrosion of the electrode increases linearly with time for all H_2SO_4 concentrations; (b) the corrosion rate of the electrode increases rapidly above 8 mol dm⁻³ H_2SO_4 .

3.1.2. Temperature. The influence of temperature on the average corrosion rate of the electrode polarized anodically at 200 mA cm⁻² in 9 mol dm⁻³ H₂SO₄ is shown in Fig. 3. This figure shows that the stability of the electrode increases with increasing temperature.

3.1.3. Current density and quantity of electricity. Figure 4 shows the weight loss of the electrode as a function of current density for two quantities of electricity. The corrosion of the electrode is independent of current density but increases with the quantity of electricity.

3.1.4. Influence of metallic cations. The presence of metallic cations as Co^{2+} , Mn^{2+} in the electro-

Fig. 2. Average corrosion rate of the Ti/Au/PbO₂ electrode polarized anodically at 200 mA cm⁻² as a function of H_2SO_4 concentration. $T = 30^{\circ}$ C.

lyte decreases the corrosion rate of the electrode (Figs 5 and 8).

3.2. Anodic characteristics of the electrode

Figure 6 shows the current-potential curves obtained on Ti/PbO_2 and $Ti/Au/PbO_2$ containing different amounts of gold.

The resistance of the electrode (slope of the linear part of the *i*-V curve) is high (1.38 Ω cm²) in the absence of gold and decreases considerably (0.3-0.5 Ω cm²) if gold is incorporated between the Ti and PbO₂.

3.3. Electrochemical oxidation of manganous sulphate

The variation of instantaneous current efficiency for manganous sulphate oxidation with the charge passed is shown in Fig. 7 at different H_2SO_4 concentrations using a Ti/Au/PbO₂ electrode. The corrosion rate of this electrode at different H_2SO_4 concentrations in the presence of manganous sulphate is shown in Fig. 8.

Fig. 3. Influence of temperature on the average corrosion rate of the $Ti/Au/PbO_2$ electrode polarized anodically at 200 mA cm⁻² in 9 mol dm⁻³ H₂SO₄.

4. Discussion

4.1. Influence of incorporated gold between the titanium and lead dioxide

The formation of TiO_2 between the titanium substrate and PbO_2 is probably due to oxygen forma-

Fig. 5. Corrosion of the Ti/Au/PbO₂ electrode polarized anodically at 200 mA cm⁻². $T = 10^{\circ}$ C. A = 9 mol dm⁻³ H₂SO₄ + 0.714 mol dm⁻³ CoSO₄ • 7 H₂O; B = 9 mol dm⁻³ H₂SO₄. 9.1 g Au m⁻², 522.1 g PbO₂ m⁻².

Fig. 4. Weight loss of the Ti/Au/PbO₂ electrode polarized anodically at different current densities in 9 mol dm⁻³ H₂SO₄. T = 20° C. A: quantity of electricity, 1 Ah; B: quantity of electricity, 2 Ah.

tion, part of which is discharged on the active layer-electrode interface-leaving the electrode surface in the form of bubbles. A part of it is adsorbed on the surface and penetrates through the active oxide layer towards the titanium interface by diffusion or migration. Oxygen is then chemisorbed on to titanium foming TiO_2 .

Incorporation of a layer of precious metal (Au, Pt) between the titanium substrate and PbO₂

Fig. 6. Stationary polarization curves obtained in 2 mol dm⁻³ H_2SO_4 at 20° C. (A) Ti/Au/PbO₂ (9.1 g Au m⁻², 522.1 g PbO₂ m⁻²); (B) Ti/Au/PbO₂ (2.31 g Au m⁻², 532.75 g PbO₂ m⁻²); (C) Ti/PbO₂.

4.2. Corrosion of the lead dioxide electrode

The corrosion of the PbO₂ electrode polarized anodically in H₂SO₄ increases under conditions where the formation of H₂O₂ is favoured [6] as: high H₂SO₄ concentration; low temperature; and absence of metallic cations (Mn^{2+} , Co^{2+} , Fe^{2+}).

Fig. 8. Influence of H_2SO_4 concentration on the average corrosion rate of Ti/Au/PbO₂ polarized anodically at 50 mA cm⁻² in 0.228 mol dm⁻³ MnSO₄ · H₂O. $T = 85^{\circ}$ C.

Fig. 7. Variation of instantaneous current efficiency for manganous sulphate oxidation with charge passed using a Ti/Au/ PbO₂ electrode. 0.228 mol dm⁻³ MnSO₄ · H₂O; $T = 85^{\circ}$ C; 50 mA cm⁻² current. $\bigstar 6.8$ mol dm⁻³ H₂SO₄; $\bigstar 9.0$ mol dm⁻³ H₂SO₄; $\bigstar 9.0$ mol dm⁻³ H₂SO₄; $\bigstar 10.8$ mol dm⁻³ H₂SO₄.

The stability of the PbO₂ electrode depends on the acid used as electrolyte, thus, in nitric and perchloric acids the corrosion of PbO₂ decreases considerably. For both these acids no H_2O_2 is formed by electrolysis at the electrode [7].

Taking these experimental facts in to consideration we can suppose that the corrosion of the PbO₂ electrode is due to the oxidation of H_2O_2 (formed in H_2SO_4 solution) by the PbO₂ film:

$$PbO_2 + H_2O_2 + H_2SO_4 \rightarrow PbSO_4 + 2 H_2O + O_2.$$
 (1)

4.3. Electrochemical oxidation of manganous sulphate

The electrochemical reactions that may be involved in electrolysing $MnSO_4$ in H_2SO_4 are

$$Mn^{2+} \rightarrow Mn^{3+} + e \qquad E^0 = 1.51 \quad (2)$$

$$2H_2O \rightarrow O_2 + 4H^+ + 4e \qquad E^0 = 1.229. \quad (3)$$

According to these potentials, oxygen evolution (Equation 3) should compete with the main reaction. However, oxygen evolution requires a considerable overvoltage on PbO₂ [8]. This explains the high yield of Mn^{3+} (or/and MnO_2) obtained. The Mn^{3+} formed electrochemically at the anode disproportionates to Mn^{2+} and MnO_2 .

$$2Mn^{3+} + 2H_2O \rightarrow Mn^{2+} + MnO_2 + 4H^{+}.$$
 (4)

This reaction is favoured at low H_2SO_4 concentrations. Figure 7 shows that in 6.8 mol dm⁻³ H_2SO_4 , 2 F are used for each mole of MnSO₄

indicating that MnO_2 is the electrolysis product. At high H_2SO_4 concentrations(10.8–12 mol dm⁻³) 1.1 F are used for each mole of $MnSO_4$ indicating that the main electrolysis product is $Mn_2(SO_4)_3$.

References

- D. W. Wabner, H. P. Fritz and R. Huss, Chem. Ing. Tech. 49 (1977) 329.
- [2] Electricity Council, British Patent No. 1.373.611 (1974).

- [3] D. Gilroy and R. Stevens, J. Appl. Electrochem. 10 (1980) 511.
- [4] A. T. Kuhn and P. M. Wright, 'Industrial Electrochemical Processes', (edited by A. T. Kuhn) Elsevier, Oxford (1971) p. 525.
- [5] Ch. Comninellis and E. Plattner, Oberfläche/ surface (in press).
- [6] P. Galonne and G. Milazzo, 'Electrochimie', Vol. 2, (edited by G. Milazzo) Dunod, Paris (1969).
- [7] N. G. Bakhchisaraits'yan, V. A. Oshchinski, A. A. Grebenkina, E. M. Vasileva and D. D. Cemonov, *Tr. Mosk. Khim – Tekhnol. Inst.* 54 (1967) 149.
- [8] G. Kno, M. Masuda, M. Takshima and O. Nakomura, Denki Kagaku 37 (1964) 356.